Detecting Thermal Cloaks via Transient Effects
نویسندگان
چکیده
Recent research on the development of a thermal cloak has concentrated on engineering an inhomogeneous thermal conductivity and an approximate, homogeneous volumetric heat capacity. While the perfect cloak of inhomogeneous κ and inhomogeneous ρcp is known to be exact (no signals scattering and only mean values penetrating to the cloak's interior), the sensitivity of diffusive cloaks to defects and approximations has not been analyzed. We analytically demonstrate that these approximate cloaks are detectable. Although they work as perfect cloaks in the steady-state, their transient (time-dependent) response is imperfect and a small amount of heat is scattered. This is sufficient to determine the presence of a cloak and any heat source it contains, but the material composition hidden within the cloak is not detectable in practice. To demonstrate the feasibility of this technique, we constructed a cloak with similar approximation and directly detected its presence using these transient temperature deviations outside the cloak. Due to limitations in the range of experimentally accessible volumetric specific heats, our detection scheme should allow us to find any realizable cloak, assuming a sufficiently large temperature difference.
منابع مشابه
Spectral effectiveness of engineered thermal cloaks in the frequency regime
We analyse basic thermal cloaks designed via different geometric transforms applied to thermal cloaking. We evaluate quantitatively the effectiveness of these heterogeneous anisotropic thermal cloaks through the calculation of the standard deviation of the isotherms. The study addresses the frequency regime and we point out the cloak's spectral effectiveness. We find that all these cloaks have ...
متن کاملTransient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)
A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملTemperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes.
The macroscopic control of ubiquitous heat flow remains poorly explored due to the lack of a fundamental theoretical method. Here, by establishing temperature-dependent transformation thermotics for treating materials whose conductivity depends on temperature, we show analytical and simulation evidence for switchable thermal cloaking and a macroscopic thermal diode based on the cloaking. The la...
متن کاملNumerical Analysis of Transient Heat Transfer in Radial Porous Moving Fin with Temperature Dependent Thermal Properties
In this article, a time dependent partial differential equation is used to model the nonlinear boundary value problem describing heat transfer through a radial porous moving fin with rectangular profile. The study is performed by applying a numerical solver in MATLAB (pdepe), which is a centered finite difference scheme. The thermal conductivity and fin surface emissivity are linearly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016